Software Research:
Where do we go from here?

Benjamin C. Pierce
University of Pennsylvania

SDP Workshop, 18-19 April 2001

Benjamin C. Pierce

We’re not doing so badly...

* Present-day software engineering is actually
astonishingly successful. Yes, we complain
about cost, bugs, etc., but we are routinely
building and using software systems of a size and
complexity that could scarcely have been
believed 20 years ago.

* How did we do this?

By applying lots and lots of good ideas

Benjamin C. Pierce

But we can’t stop here!

 Does this mean we have “solved the software
crisis”?
Of course not: there was never just one software crisis.

« As our capabilities grow, so do our appetites

Benjamin C. Pierce

Some new problem areas

Dynamically Assembled Software
— Plug-ins and friends
— Software leasing
— Mobile agents

Worldwide file sharing
— Massive replication

Interfacing security infrastructure(s) and application
programs

Concurrent / distributed programming “for the masses,
by the masses”

Benjamin C. Pierce

&

How Formal?

Impractical for most applications,
T e e 4— but rich source of powerful
concepts (invariants, pre-/post-
conditions, rely/guarantee,
serializability, etc.

— Hoare logic
— Relational calculus
— Process calculi

“Lightweight” formal methods < Big bang for buck
— Type systems

B Mode! checkin.g] Surprisingly effective...
— Run-time monitoring
95% of benefit is obtained by
attempting to formalize software
Pseudo-formal methods designs; succeeding not especially
— UML important!

Informal methods «—
— Design patterns
— Extreme programming

= Also very effective... “Mining
the expertise of good
programmers and managers”

Benjamin C. Pierce

Lightweight Formal Methods

Formal methods will never make a difference until they can be used by
people that do not understand them. ---Tom Melham

Types

— Capture simple “contracts” between components and their
environments

— Conformance is checked automatically every time the program is
compiled

— Challenge: Can we engineer powerful type systems to make
them useful in a highly dynamic environment? (Cf. proof-
carrying code)

Model checking

— Very helpful in expositing flaws in hardware designs
— Challenge: Can we do something similar for software?

Run-time monitoring

— ldentify components that actually misbehave in real time,
instead of detecting those that might in advance

Need more techniques like these!

Benjamin C. Pierce

Research Agenda

. Nurture foundations
Moderate number of small projects (1-2 PI)

ll. Encourage experimentation
Many small-to-medium-sized efforts (1-5 PlI)

lll. Stress-test promising ideas
Small number of larger projects (4-15 PI)

Good ideas in software often take a long time
to mature.
E.g. garbage collection...
Invented in the late ‘50s
Gained widespread acceptance in the mid ‘90s!

Benjamin C. Pierce

	Software Research:Where do we go from here?
	We’re not doing so badly…
	But we can’t stop here!
	Some new problem areas
	How Formal?
	Lightweight Formal Methods
	Research Agenda

